论文部分内容阅读
There are approximately 109 proteins in a cell. A hotspot in bioinformatics is how to identify a protein’s subcellular localization, if its sequence is known. In this paper, a method using fast Fourier transform-based support vector machine is developed to predict the subcellular localization of proteins from their physicochemical properties and structural parameters. The prediction accuracies reached 83% in prokaryotic organisms and 84% in eukaryotic organisms with the substitution model of the c-p-v matrix (c, composition; p, polarity; and v, molecular volume). The overall prediction accuracy was also evaluated using the leave-one-out jackknife procedure. The influence of the substitution model on prediction accuracy has also been discussed in the work. The source code of the new program is available on request from the authors.