论文部分内容阅读
利用化学气相沉积(CVD)法,以Au为催化剂,制备出了β-Ga_2O_3纳米线阵列。Au催化剂的密度和尺寸随快速退火处理温度的不同而改变。催化剂的形貌决定着β-Ga_2O_3纳米线阵列的形貌结构,并进一步影响其光致发光特性。X射线衍射分析显示所生长的纳米线为单斜结构的β-Ga_2O_3。扫描电子显微镜(SEM)测试表明:随着快速退火温度的升高,Au催化剂的形貌发生显著变化。在900℃下快速退火处理120 s后,生长的纳米线阵列结构致密,纳米线平均直径较小,且直径分布较为均匀。常温下以316 nm波长激发时,β-Ga_2O_3纳米线阵列光致发光谱出现紫外(393 nm)和蓝光(454 nm)发光峰。相对紫外光,蓝光的发光强度随着Au催化剂快速退火处理温度的升高而相对减弱,同时整体光致发光强度会随之增强。
The β-Ga 2 O 3 nanowire arrays were prepared by chemical vapor deposition (CVD) method with Au as catalyst. The density and size of the Au catalyst change with the rapid annealing temperature. The morphology of the catalyst determines the morphology of the β-Ga 2 O 3 nanowire arrays and further affects their photoluminescence properties. X-ray diffraction analysis shows that the grown nanowires are monoclinic β-Ga 2 O 3. Scanning electron microscopy (SEM) tests showed that the morphology of Au catalyst changed significantly with the increase of annealing temperature. After rapid annealing at 900 ℃ for 120 s, the grown nanowire array has a compact structure with a smaller average diameter of nanowires and a more uniform diameter distribution. The emission spectra of β-Ga 2 O 3 nanowire arrays show UV (393 nm) and blue (454 nm) peaks at 316 nm. Compared with UV, the luminescence intensity of blue light decreases with the increase of annealing temperature of Au catalyst, and the overall photoluminescence intensity will be enhanced.