论文部分内容阅读
由F1=1 ,F2 =1 ,Fn+2 =Fn+1+Fn(n∈N+)给出的数列1 ,1 ,2 ,3 ,5,8,1 3 ,2 1 ,3 4,55,89,1 4 4,…称为斐波那契数列 .文 [1 ]给出了如下有关斐波那契数运算封闭性定理 :FnFn+d -Fn+1Fn+d- 1=( -1 ) n- 1Fd- 1(d ≥ 2 ,n ,d ∈N+) .由于其证明运用了斐波那契数列的通项公式Fn=15[
The series 1, 1, 2, 3, 5, 8, 1 3, 2 1, 3 4, 55 given by F1=1, F2=1, Fn+2=Fn+1+Fn(n∈N+) 89,1 4,4... is called the Fibonacci sequence. The article [1] gives the following closure theorem about Fibonacci number operation: FnFn+d -Fn+1Fn+d-1 =( -1 ) N- 1Fd-1 (d ≥ 2 ,n,d ∈N+). Since it proves that the general term of the Fibonacci sequence is used Fn=15[