论文部分内容阅读
It is promising that mobile relay nodes(MRNs), i.e., relays mounted on top of transportation vehicles, are deployed in future mobile communication systems in order to improve system performance. In this paper a multi-MRN aided multiuser system is studied. The system performance under direct transmission mode and MRN assisted transmission mode are compared with variable parameter of vehicle penetration loss(VPL). The mobile users are separated into two categories in which the direct transmission mode and the MRN assisted transmission mode are selected to transmit in downlink, respectively. A novel power allocation algorithm is proposed to increase the average system capacity under the constraint of total transmit power. The different power allocation schemes are applied for users in two categories to improve the system performance.It is demonstrated by simulation results that the proposed algorithm outperforms the average power allocation algorithm.
It is promising that mobile relay nodes (MRNs), ie, relays mounted on top of transportation vehicles, are deployed in future mobile communication systems in order to improve system performance. In this paper a multi-MRN aided multiuser system is studied. The system performance under direct transmission mode and MRN assisted transmission mode are compared with variable parameter of vehicle penetration loss (VPL). The mobile users are separated into two categories in which the direct transmission mode and the MRN assisted transmission mode are selected to transmit in downlink, respectively. A novel power allocation algorithm is proposed to increase the average system capacity under the constraint of total transmit power. The different power allocation schemes are applied for users in two categories to improve the system performance. It is demonstrated by simulation results that the proposed algorithm outperforms the average power allocation algorithm.