论文部分内容阅读
The basic theory of symplectic algorithm was introduced. A comparison between Runge-Kutta method and symplectic integration method was preformed in the simulation of the long time behavior of H + H2 system on BKMP potential energy surface. Our results reveal a dis-sipative behavior in the integral of ordinary differential equation by the fourth order Runge-Kutta method, which causes incorrect simulation results in QCT calculations. However, when the symplectic integration method is applied, the dissipative behavior is not found in the same system. When the initial state is the same, the energy deviation of fourth order symplectic integral method is almost one percent of that of fourth order Runge-Kutta method in a 60000-step simulation, and that of sixth order symplectic integral method is much less. These results show that the symplectic integral methods are always the better choice in the integral calculation of the long time behavior in maintaining energy conservation.
A basic principle of symplectic algorithm was introduced. A comparison between Runge-Kutta method and symplectic integration method was preformed in the simulation of the long time behavior of H + H2 system on BKMP potential energy surface. Our results reveal a dis-sipative behavior in the integral of ordinary differential equation by the fourth order Runge-Kutta method, which causes incorrect simulation results in QCT calculations. However, when the symplectic integration method is applied, the dissipative behavior is not found in the same system. the same, the energy deviation of fourth order symplectic integral method is almost one percent of that of fourth order Runge-Kutta method in a 60000-step simulation, and that of sixth order symplectic integral method is much less. These results show that the symplectic integral methods are always the better choice in the integral calculation of the long time behavior in maintaining energy conservation.