磷酸铁锂正极材料改性研究进展

来源 :储能科学与技术 | 被引量 : 0次 | 上传用户:lx84015092
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
锂离子二次电池(LIBs)是当今新能源领域的主流储能器件.磷酸铁锂(LiFePO4)凭借高能量密度、低成本、稳定的充放电平台、环境友好、安全性高等优势,成为应用最为广泛的锂离子电池正极材料之一.如何提高其输出功率以及低温下的能量密度和使用寿命,是磷酸铁锂正极材料面临的主要挑战.本文通过对近期相关文献的探讨,归纳总结了近年来针对磷酸铁锂正极材料的主流改性策略.详细分析了元素掺杂提高材料电化学性能的内在机理,梳理了不同包覆剂对磷酸铁锂的保护机制,这两种手段可有效提高磷酸铁锂正极材料的电子电导率和离子扩散速率,实现材料更高的能量密度、更长的循环寿命和更高的倍率性能.此外也总结了磷酸铁锂常见补锂添加剂的特性及其对正极首圈库仑效率和放电比容量的改善行为.综合分析表明,多种元素共掺杂,先进碳材料包覆和高容量补锂材料的添加有望成为提升磷酸铁锂电化学性能的重要策略.最后,对磷酸铁锂正极未来在商业化生产改良和开发柔性电极等方向的发展前景和面临的挑战进行了展望.
其他文献
采用简单的机械球磨混合法制得NCM@LMFP/C(LiNi0.6Co0.2Mn0.2O2@LiMn0.6Fe0.4PO4/C)复合正极材料,系统地研究了NCM与LMFP/C复合比例(9:1,8:2,7:3,6:4,5:5)对材料电化学性能和热稳定性的影响.使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和差示扫描量热仪(DSC)对复合正极材料的结构与形貌进行表征研究.研究结果表明:当NCM与LMFP/C复合比例小于8:2时,亚微米级LMFP/C出现富集、团聚,将NCM包埋其中.当NCM与LMFP/C复
为了改善选择性激光熔化(selective laser melting,SLM)过程的层间温度分布、 降低层间热积累,采用移动热源法和生死单元技术对激光光斑定向移动和金属粉末逐层铺设过程进行数值模拟,研究了不同层间时间间隔和扫描策略对各层扫描路径及其特征点温度的影响.研究结果表明:层间时间间隔越小,各扫描路径层间热积累越多,且高速、高功率条件下的层间热积累要少于低速、低功率条件下的层间热积累;采用层间异向扫描策略时扫描路径末端会出现较明显的局部高温区域,且高速、高功率条件下的局部热积累要少于低速、低功率条
金属有机骨架材料(MOFs)及其衍生物因其灵活多变的化学组成和多孔结构等独特优点而成为锂-氧气(Li-O2)电池正极的候选催化剂.本文通过对近期相关文献的分析,综述了MOFs基催化剂的设计和合成策略,重点介绍了MOFs热解衍生碳基材料、MOFs衍生单原子催化剂以及原始MOFs材料在Li-O2电池中的应用,分析了MOFs及其衍生物对ORR/OER的催化机理.综合分析表明,构建具有高密度催化活性位点、结构稳定、孔隙率高、导电性良好的MOFs材料及其衍生物是今后开发高效Li-O2电池正极催化剂的发展方向.