Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field

来源 :矿物冶金与材料学报 | 被引量 : 0次 | 上传用户:gir1s
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The evolution behavior of the γ″ phase of IN718 superalloy in a temperature/stress coupled field was investigated. Results showed that the coarsening rate of the γ″ phase was significantly accelerated in the temperature/stress coupled field. Based on the detail microstructural and crystal defect analysis, it was found that the coarsening rate of the γ″ phase with applied stress was significantly higher than that without stress. The main reasons for the increase in the coarsening rate of the γ″ phase are as follows: the vacancy formation energy is decreased by the applied stress, which leads to an increase in the vacancy concentration; in the temperature/stress coupled field, the Nb atoms easily combine with vacancies to form complexes and diffuse with the complexes, resulting in a significant increase in the Nb atom diffusion coefficient; Nb atom diffusion is the key control factor for the coarsening of the γ″ phase.
其他文献
The novel cast irons of chemical composition (wt%) 0.7C–5W–5Mo–5V–10Cr–2.5Ti were invented with the additions of 1.6wt% B and 2.7wt% B. The aim of this work was to study the effect of boron on the structural state of the alloys and phase elemental distrib
Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulph-ide bioleaching to obtain better bioleaching efficiency. Results illustrated that appropriate aeration improved bacterial concent
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect
The effects of multipass friction stir processing (FSP) and Mg powder addition on the different microstructure parts, including the stir zone (SZ), heat-affected zone (HAZ), and thermomechanically affected zone (TMAZ) of Al 1050 alloy were investigated. M
Iron carbon agglomerates (ICA) are used to realize low-carbon blast furnace ironmaking. In this study, the central composite design based on response surface methodology was used to synergistically optimize the compressive strength, reactivity, and post-r
With the rapid development of 3C industries, the demand for high-thermal-conductivity magnesium alloys with high mechanical performance is increasing quickly. However, the thermal conductivities of most common Mg foundry alloys (such as Mg–9wt%–1wt%Zn) ar
A green method of super-gravity separation, which can enhance the filtration process of bismuth and copper phases, was investig-ated and discussed for the rapid removal of copper impurity from bismuth–copper alloy melts. After separation by the super-grav
Al–Mg alloys are an important class of non-heat treatable alloys in which Mg solute and grain size play essential role in their mech-anical properties and plastic deformation behaviors. In this work, a cyclical continuous expanded extrusion and drawing (C
Multicomponent Al20Cr20Fe25Ni25Mn10 alloys were synthesized using spark plasma sintering at different temperatures (800, 900, and 1000℃) and holding times (4, 8, and 12 min) to develop a high entropy alloy (HEA). The characteristics of spark plasma-synthe
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La add