论文部分内容阅读
目的:研究计算机辅助对冲技术的主要影响因素及运动纤维传导速度分布的正常值。方法:选择2004-05/2005-03知情同意的健康志愿者29人进行计算机辅助对冲技术检测,测定了正中、尺及腓总神经传导速度分布正常值范围,并对最慢纤维传导速度(慢纤维速度)的影响因素进行回归分析。观察了2名健康人不同肢体皮温(变化范围2~4℃)的传导速度分布结果和10名健康人的不同计算机辅助对冲技术刺激强度(最大、最大+15%~50%)传导速度分布的变化。对5名健康人的相同神经采用相同的计算机辅助对冲技术参数和方法分别进行3次重复检测,观察其结果的一致性和可重复性。结果:①室温20~22℃,肢体皮温(31.9±0.89)℃情况下,测得传导速度分布正常值,正中神经最慢速度(慢纤维速度CV10%)(47.31±4.58)m/s、中等速度(中速纤维速度CV50%)(52.17±3.78)m/s、最快速度(快纤维速度CV90%)(56.14±5.13)m/s;尺神经慢纤维速度(48.46±6.0)m/s、中速纤维速度(53.11±5.16)m/s、快纤维速度(57.33±5.04)m/s;腓总神经慢纤维速度(35.58±5.98)m/s、中速纤维速度(41.61±4.76)m/s、快纤维速度(46.04±3.50)m/s。②回归分析显示:身高、皮温和年龄与慢纤维速度呈负相关,身高是慢纤维速度最显著的影响因素(P=0.013)。③肢体皮温下降2℃时的传导速度分布结果与标准皮温比较无明显变化,下降4℃的传导速度分布数值明显降低,快纤维速度降低7~10m/s,慢纤维速度降低3~9m/s。④最大刺激强度和超强刺激(最大刺激量+15%~50%)的传导速度分布结果比较显示<50m/s的纤维分布明显减少,而快纤维速度无明显差别;超强刺激强度变化对传导速度分布结果无明显影响(P=0.999)。⑤计算机辅助对冲技术重复实验传导速度分布结果显示各组之间无显著差异(P正中=0.649,P腓总=0.984)。结论:计算机辅助对冲技术对研究不同传导速度的运动神经纤维具有重复性好、无创和敏感性高的特点,能更全面评价运动神经传导特性。因此计算机辅助对冲技术可能在周围神经病变的早期诊断,尤其是发现亚临床病变具有重要临床意义。
Objective: To study the main influencing factors of computer aided hedging technique and the normal value of the velocity distribution of motion fiber. Methods: 29 healthy volunteers with informed consent from 2004-05 / 2005-03 were enrolled in this study. Computer-aided hedging technique was used to measure the normal range of median, median and common peroneal nerve conduction velocities. The slowest fiber conduction velocity Fiber speed) of the influencing factors for regression analysis. The conduction velocity distributions of two healthy individuals with different limb skin temperature (range 2 ~ 4 ℃) and different computer aided hedging techniques of 10 healthy individuals were observed. The stimulus intensity (maximum, maximum + 15% ~ 50% The change. The same nerve of 5 healthy people were tested by the same computer aided hedging technique parameters and methods for 3 times repeatedly to observe the consistency and repeatability of the results. Results: ① The normal conduction velocity distribution was measured at room temperature of 20-22 ℃ and skin temperature of 31.9 ± 0.89 ℃. The slowest median nerve velocity (CV10%) was 47.31 ± 4.58 m / s, The average velocity of the slow fibers (CV50%) was 52.17 ± 3.78 m / s, the fastest speed was 58.96 ± 6.0 m / s, moderate fiber velocity (53.11 ± 5.16) m / s, fast fiber velocity (57.33 ± 5.04) m / s, total peroneal nerve fiber slow velocity (35.58 ± 5.98) m / s, medium fiber velocity (41.61 ± 4.76 ) m / s, fast fiber speed (46.04 ± 3.50) m / s. ② Regression analysis showed that height, skin temperature and age were negatively correlated with slow fiber velocity. Height was the most significant factor affecting slow fiber velocity (P = 0.013). (3) There was no significant difference in the conduction velocity distribution between the skin temperature at 2 ℃ and the standard skin temperature, and the conduction velocity distribution at 4 ℃ decreased significantly, the fast fiber speed decreased 7-10m / s and the slow fiber speed decreased 3-9m / s. ④ Comparison of the maximum and maximum stimuli (maximal stimulus + 15% ~ 50%) showed that the distribution of fibers with <50m / s obviously decreased while the fast fiber velocity had no significant difference; The results of conduction velocity distribution had no significant effect (P = 0.999). ⑤ Computer aided hedging technique Repeated experimental transmission velocity distribution results showed no significant difference between the groups (P median = 0.649, P Philippine total = 0.984). Conclusion: Computer-aided hedging technique has the characteristics of good repeatability, noninvasiveness and sensitivity for studying motor nerve fibers with different conduction velocity, and can fully evaluate the motor nerve conduction characteristics. Therefore, computer-aided hedging technology may be in the early diagnosis of peripheral neuropathy, especially the discovery of subclinical lesions of great clinical significance.