论文部分内容阅读
<正> 古典的 Liouville 定理说:全平面上有界的全纯函数必是常数.在多复变函数论里,有许多定理是研究什么样的复流形上不存在非常值或非退化的(有界)全纯函数或全纯映照.这类定理可以统称为 Liouville 型定理.与一个复变数情况不同的是这类定理大多可以由复流形上的 Schwarz 引理推出.例如,S.T.Yau 证明了一个 Schwarz 引理后