论文部分内容阅读
针对大多谱聚类算法由于计算复杂度高而不适于大规模数据的问题,提出了一种能处理大规模数据集的多层算法。该算法把海量数据根据一定的相关性逐级分组成小数据集,再对分组后的小数据集用谱聚类算法进行聚类,最后利用权核K均值聚类逐级微调,完成全部数据的聚类。通过对UCI数据库中的数据集和图像分割的仿真实验,结果表明该算法的聚类效果很好。