MnOx/生物炭复合材料对土壤重金属的固化效果及其机理研究

来源 :环境化学 | 被引量 : 0次 | 上传用户:jovewu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了探究高锰酸钾改性生物炭(MnOx/生物炭)对土壤重金属的固化效果与生物炭的差异,本文采用高锰酸钾溶液改性小麦秸秆生物炭,研究不同MnOx负载浓度、复合材料添加量和固化时间对MnOx/生物炭复合材料固化土壤重金属Cd、Pb、Zn和Cu性能的影响及其机理.结果 表明,锰氧化物负载能够显著增加生物炭表面的羟基、羧基和酚羟基等官能团的数量.土壤毒性浸出液(TCLP)中重金属浓度变化表明,当固化剂添加量为1%时,MnOx/生物炭对土壤中Cd、Pb、Zn、Cu固化效果是未改性生物炭的2-4倍;在相同固化时间内,MnOx/生物炭复合材料对重金属固定化效果随着添加量和MnOx负载的浓度升高而增大.MnOx/生物炭复合材料的添加可促进重金属Cd、Pb、Zn和Cu由可交换态(EX)和碳结合态(CB)向更加稳定的锰氧化物结合态(OX)、有机物结合态(OM)和残渣态(RS)转化,从而降低污染土壤重金属的活性态比例.MnOx/生物炭主要通过吸附和氧化的共同作用,实现对土壤中重金属的高效固定.固化处理后土壤TCLP浸出液中Mn浓度均低于1.52 mg·L-1,说明使用复合材料不会造成土壤锰污染.MnOx/生物炭复合材料在修复重金属污染土壤中具有较大的应用潜力.
其他文献
天然有机质(natural organic matter,NOM)在土壤环境中扮演着重要的角色,其对土壤水分的保持、植物的生长,污染物的迁移转化、土壤矿物颗粒的团聚和碳循环均有着重要影响.因此,明确NOM的环境行为以及它们与污染物的相互作用有着重要的生态环境意义.本文综述了各种不同性质NOM的提取及纯化方法,并分析了它们的优缺点;介绍了NOM常用的光谱学表征技术;并通过综述NOM与土壤矿物间的相互作用,描述了NOM的环境行为;论述了NOM与外源重金属和有机污染物之间的相互作用方式、机制以及影响因素,并描述
采集京津冀及周边6个城市春季的环境空气PM2.5样品,用离子色谱法测定其中的高氯酸盐,分析浓度水平和空间分布特征,并与PM2.5浓度和现有研究成果进行对比,初步分析了高氯酸盐经呼吸暴露对六类人群的潜在健康风险.结果 表明,高氯酸盐的城市间浓度范围为1.72-94.5 ng·m-3,7日浓度均值范围为20.4-52.1 ng·m-3,其中保定和北京的7日浓度均值偏高,均值分别为52.1 ng·m-3和37.4 ng·m-3,天津和石家庄次之,均值分别为26.5 ng·m-3和27.9 ng·m-3,郑州和济