论文部分内容阅读
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic. In the rifting stage, the margin received lacustrine and shallow marine facies sediments. In the post-rifting thermal subsidence, the margin accumulated shallow marine facies and hemipelagic deposits, and the deepwater basins formed. Petroleum systems of deepwater setting have been imaged from seismic data and drill wells. Two kinds of source rocks including Paleogene lacus-trine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea. The deepwater reservoirs are characterized by the deep sea channel fill, mass flow complexes and drowned reef carbonate platform. Profitable capping rocks on the top are mudstones with huge thickness in the post-rifting stage. Meanwhile, the faults developed during the rifting stage provide a migration path favourable for the formation of reservoirs. The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta, deepwater submarine fan sand-stone and reef carbonate reservoirs.
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic. In the rifting stage, the margin received lacustrine and shallow marine facies sediments. In the post-rifting thermal subsidence, the margin accumulated shallow marine facies and hemipelagic deposits, and the deepwater basins formed. Petroleum systems of deepwater setting have been imaged from seismic data and drill wells. Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea. The deepwater reservoirs are characterized by the deep sea channel fill, mass flow complexes and drowned reef carbonate platform. Profitable capping rocks on the top are mudstones with huge thickness in the post-rifting stage. Meanwhile, the faults during during the rifting stage provide a migration path favourable for the formation of reservoirs. The analysis of seismic and drilling da ta suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta, deepwater submarine fan sand-stone and reef carbonate reservoirs.