论文部分内容阅读
苏教版必修5课本中第32页写道:“在数列{a n}中,对于每一个正整数n(n∈{1,2,…,k}),都有一个数a n与之对应,因此,数列可以看成以正整数集N(或它的有限子集{1,2,…,k})为定义域的函数a n=f(n).”数列是一个定义在正整数集(或其子集)上的特殊函数.从这个意义上看,它丰富了学生所接触的函数概念的范围,引导学生利用函数去研究数列问题,能使解数列的问题更有新意和综合性,更能有效地培养学生的思维品质和创新意识.因此,我们在解决数列问题时,应充分利用函数的有关知识,以函数的概念、图象、性质为纽带,架起函数与数列之间的桥梁,揭示它们之间的内在联系,从而有效地解决数
In the series {an}, for each positive integer n (n ∈ {1,2, ..., k}), there is an number an that corresponds to it , So the sequence can be seen as a function of the domain an = f (n) in the set of positive integers N (or its finite subset {1,2, ..., k}). "The sequence is a sequence defined in positive integers In this sense, it enriches the range of function concepts that students come into contact with, and guides students to use functions to study sequence problems, to make the solution of sequence problems more innovative and comprehensive Therefore, when we solve a series of questions, we should make full use of the relevant knowledge of the function, take the concept of the function, the image and the nature as the link, and set up the function and the sequence Between the bridge, revealing the intrinsic link between them, thus effectively solve the number