论文部分内容阅读
To investigate the size effect on the characteristics of boiling heat transfer, boiling behavior of FC-72 in heated vertical miniature circular tubes immersed in a liquid pool was experimentally studied. Two AISI 304 stainless steel tubes with inner diameters of 1.10 mm and 1.55 mm correspondingly, were heated by swirled Ni-Cr wire heaters and sealed in Lucite blocks by silicon adhesive. Both the top and the bottom ends of the circular test sections were open to the liquid pool. The boiling curves and heat transfer coefficients were obtained experimentally. The boiling behaviors at the outlets of the miniature tubes were also visualized with a digital video camera. Experimental results show that the tube geometry has a significant effect on the boiling characteristics. Vapor blocking at the outlet of the smaller circular tube with a diameter of 1.10 mm caused severe boiling hysteresis phenomena. The CHF decreased with reducing in tube size.
To investigate the size effect on the characteristics of boiling heat transfer, boiling behavior of FC-72 in heated vertical miniature circular tubes immersed in a liquid pool was experimentally studied. Two AISI 304 stainless steel tubes with inner diameters of 1.10 mm and 1.55 mm correspondingly , were heated by swirled Ni-Cr wire heaters and sealed in Lucite blocks by silicon adhesive. Both the top and the bottom ends of the circular test sections were open to the liquid pool. The boiling curves and heat transfer coefficients were obtained experimentally. The boiling behaviors at the outlets of the miniature tubes were also visualized with a digital video camera. Experimental results show that the tube geometry has a significant effect on the boiling characteristics. Vapor blocking at the outlet of the smaller circular tube with a diameter of 1.10 mm caused severe boiling hysteresis phenomena. The CHF decreased with reducing in tube size.