论文部分内容阅读
压缩感知(Compressive sensing,CS)理论框架下逆合成孔径雷达(Inverse syntheitic operture radar,ISAR)成像的结果具有超分辨、无旁瓣干扰等特点,但CS ISAR成像方法性能仍然受到稀疏表示不准确和图像重建方法效率低等限制。基于深度神经网络(Deep neural network,DNN)的欠采样或不完整信号重建方法取得了瞩目的表现。DNN能够自主学习最优网络参数并挖掘出输入数据的抽象高层特征表示,但目前已有的DNN都为实数域的模型,无法直接用于复数形