论文部分内容阅读
分析与处理大坝变形监测资料在大坝安全监测中意义重大。支持向量机(SVM)在大坝安全监测建模中应用广泛,但采用标准粒子群(PSO)算法对SVM参数寻优过程中,易陷入局部最优,且残差也会影响模型的预测精度。为提高大坝监测模型的泛化能力和预测精度,采用改进后的自适应位置PSO(APPSO)算法,对SVM模型的参数进行寻优,并利用马尔科夫链(MC)模型修正PSO-SVM模型的残差。工程实例分析表明,PSO-SVM-MC模型可提高模型预测的泛化能力和精度。