论文部分内容阅读
传统卷积神经网络中,卷积单元缺乏对几何变换的处理能力,导致在检测不规则形状的目标时,提取的物体特征不够完整,降低了目标检测算法的性能。针对此问题,提出了一种基于自适应感受野的DC-SSD(Deformable Convolution Single Shot multibox Detector)目标检测算法。该方法在原始SSD框架的每一个池化层后面增加一个可变形卷积层,用来学习特征偏移量,使卷积单元以自适应感受野的方式学习不同几何变形物体的特征,从而提升检测算法性能。利用该算法在VOC2007数据集上进行实