论文部分内容阅读
针对ATIS下的路径诱导中路段旅行时间不确定的问题,提出一种鲁棒优化方法.把旅行时间看作不确定参数,通过鲁棒对等式的转换建立鲁棒离散优化模型.把不确定的0-1整数规划问题转化为确定的0-1混合整数规划问题.对模型中数据的不确定性得到的鲁棒解有较高的概率保证它是可行的,且转化后的鲁棒对等式模型具有容易处理的线性优点.仿真结果表明,该方法更加符合实际的路径诱导问题.
Aiming at the problem of route-induced travel time uncertainty in ATIS under the ATIS, a robust optimization method is proposed, which considers travel time as an uncertain parameter and establishes a robust discrete optimization model through the conversion of robust equivalence. The 0-1 integer programming problem is transformed into a certain 0-1 mixed integer programming problem.The robust solution to the uncertainty of the data in the model has a high probability that it is feasible and the transformed robust pair The equation model has the advantage of easy processing linearity.The simulation results show that this method is more in line with the actual path-guidance problem.