论文部分内容阅读
现代教育强调“知识结构”与“学习过程”,目的在于发展学生的思维能力,从而把知识作为思维过程的材料和媒介。研究表明,从初中二年级开始,学生的思维由经验型水平向理论型水平转化,到高中一、二年级,逐步趋向成熟。作为高中教师,应抓住学生思维发展的飞跃时期,利用成熟期前可塑性大的特点,做好思维品质的培养工作,使学生的思维得到更好的发展。思维品质的培养是数学教育的价值得以真正实现的理想途径。
一、以“发散思维”的培养提高思维灵活性
在当前的数学教学中,普遍存在着重视集中思维的训练,而相对忽视了发散思维的培养。发散思维是理解教材、灵活运用知识所必须的,也是迎接信息时代、适应未来生活所应具备的能力。
l.引导学生对问题的解法进行发散
在教学过程中,用多种方法,从各个不同角度和不同途径去寻求问题的答案,用一题多解来培养学生思维过程的灵活性。
通过一题多解引导学生归纳证明三角恒等式的基本方法:(1)统一函数种类;(2)统一角度;(3)统一运算。
一题多解可以拓宽思路,增强知识间联系,学会多角度思考解题的方法和灵活的思维方式。
2.引导学生对问题的结论进行发散
对结论的发散是指确定了已知条件后没有现成的结论。让学生自己尽可能多地探究寻找有关结论,并进行求解。
开放型题目的引入,可以引导学生从不同角度来思考,不仅仅思考条件本身,而且要思考条件之间的关系。要根据条件运用各种综合变换手段来处理信息、探索结论,有利于思维起点灵活性的培养,也有利于孜孜不倦的钻研精神和创造力的培养。
3.引导学生对问题的条件进行发散
对问题的条件进行发散是指问题的结构确定以后,尽可能变化已知条件,进而从不同角度和用不同知识来解决问题。
对于等差数列的通项公式:an=a1+(n-1)d,显然,四个变量中知道三个即可求另一个(解方程)。如“{an}为等差数列,a1=1,d=-2.问-9为第几项”等等。然后,放手让学生自己编写题目。编题过程中.学生要对公式中变量的取值范围、变量之间的内在关系、公式的适用范围等有全面的掌握。否则,信手拈来会闹出笑话。上题中,若改d=-3,则-9为第项,显然荒谬。如此,学生对于等差数列的通项公式与求和公式的掌握会比较全面,而且能站在较高层次来看待问题,提高思维迁移的灵活性。
二、以思维灵活性的提高带动思维其他品质的提高,以思维其他品质的培养来促进思维灵活性的培养
由于思维的各种品质是彼此联系、密不可分的,处于有机的统一体中,所以思维其他品质的培养能有力地促进思维灵活性的提高。
1.思维的深刻性指思维过程的抽象程度,指是否善于从事物的现象中发现本质,是否善于从事物之间的关系和联系中揭示规律。
例方程sinx=lgx的解有( )个。
A1 B2C3 D4
学生习惯于通过解方程求解,而此方程无法求解常令学生手足无进。若能运用灵活的思维换一个角度思考:此题的本质为求方程组的公共解。运用数形结合思想转化为求函数图象交点问题,寻求几何性质与代数方程之间的内在联系。通过知识串联、横向沟通牢牢抓住事物的本质,在思维深刻性的基础上,思维灵活性才有了用武之地。
2.思维的广阔性是指善于抓住问题的各个方面,又不忽视其重要细节的思维品质。要求学生能认真分析题意,调动和选择与之相应的知识,寻找解答关键。
<例>已知抛物线在y轴上的截距为3,对称轴为直线x=-1,在x轴上截得线段长为4,求抛物线方程。
显然有c=3,利用其他条件可列方程组求a,b值。
显然有m=-1,利用其他条件可列方程组求a,k的值。
在把握整体的前提下,侧重某一条件作为解答突破口,在思维广阔性的基础上,充分运用思维灵活性调动相关知识、技能寻找解题途径。
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
一、以“发散思维”的培养提高思维灵活性
在当前的数学教学中,普遍存在着重视集中思维的训练,而相对忽视了发散思维的培养。发散思维是理解教材、灵活运用知识所必须的,也是迎接信息时代、适应未来生活所应具备的能力。
l.引导学生对问题的解法进行发散
在教学过程中,用多种方法,从各个不同角度和不同途径去寻求问题的答案,用一题多解来培养学生思维过程的灵活性。
通过一题多解引导学生归纳证明三角恒等式的基本方法:(1)统一函数种类;(2)统一角度;(3)统一运算。
一题多解可以拓宽思路,增强知识间联系,学会多角度思考解题的方法和灵活的思维方式。
2.引导学生对问题的结论进行发散
对结论的发散是指确定了已知条件后没有现成的结论。让学生自己尽可能多地探究寻找有关结论,并进行求解。
开放型题目的引入,可以引导学生从不同角度来思考,不仅仅思考条件本身,而且要思考条件之间的关系。要根据条件运用各种综合变换手段来处理信息、探索结论,有利于思维起点灵活性的培养,也有利于孜孜不倦的钻研精神和创造力的培养。
3.引导学生对问题的条件进行发散
对问题的条件进行发散是指问题的结构确定以后,尽可能变化已知条件,进而从不同角度和用不同知识来解决问题。
对于等差数列的通项公式:an=a1+(n-1)d,显然,四个变量中知道三个即可求另一个(解方程)。如“{an}为等差数列,a1=1,d=-2.问-9为第几项”等等。然后,放手让学生自己编写题目。编题过程中.学生要对公式中变量的取值范围、变量之间的内在关系、公式的适用范围等有全面的掌握。否则,信手拈来会闹出笑话。上题中,若改d=-3,则-9为第项,显然荒谬。如此,学生对于等差数列的通项公式与求和公式的掌握会比较全面,而且能站在较高层次来看待问题,提高思维迁移的灵活性。
二、以思维灵活性的提高带动思维其他品质的提高,以思维其他品质的培养来促进思维灵活性的培养
由于思维的各种品质是彼此联系、密不可分的,处于有机的统一体中,所以思维其他品质的培养能有力地促进思维灵活性的提高。
1.思维的深刻性指思维过程的抽象程度,指是否善于从事物的现象中发现本质,是否善于从事物之间的关系和联系中揭示规律。
例方程sinx=lgx的解有( )个。
A1 B2C3 D4
学生习惯于通过解方程求解,而此方程无法求解常令学生手足无进。若能运用灵活的思维换一个角度思考:此题的本质为求方程组的公共解。运用数形结合思想转化为求函数图象交点问题,寻求几何性质与代数方程之间的内在联系。通过知识串联、横向沟通牢牢抓住事物的本质,在思维深刻性的基础上,思维灵活性才有了用武之地。
2.思维的广阔性是指善于抓住问题的各个方面,又不忽视其重要细节的思维品质。要求学生能认真分析题意,调动和选择与之相应的知识,寻找解答关键。
<例>已知抛物线在y轴上的截距为3,对称轴为直线x=-1,在x轴上截得线段长为4,求抛物线方程。
显然有c=3,利用其他条件可列方程组求a,b值。
显然有m=-1,利用其他条件可列方程组求a,k的值。
在把握整体的前提下,侧重某一条件作为解答突破口,在思维广阔性的基础上,充分运用思维灵活性调动相关知识、技能寻找解题途径。
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。