论文部分内容阅读
氦液化器是前沿科学研究必需的基础设施,然而由于氦液化循环的流程复杂和变量繁多,其优化设计一直是困扰的问题.在早期由于受限于计算机技术的水平,氦液化循环设计和优化主要以循环各部位的工质状态参数为研究对象,但该方法有其局限性.因此,本文以Collins循环为例提出一种新的氦液化循环设计方法:以部件参数为优化对象,采用“两个模型”(能流模型与“双菱形”T-kA图模型)的新算法,并结合“EES程序估算 Aspen HYSYS模型校核”的设计思想,最终使得氦液化循环的设计变得操作简易且结果合理.“,”As a fundamental facility,helium liquefier is necessary to advanced scientific research.Yet,due to its complicated process and various variables,the optimization of helium liquefaction cycle has always been a bothering problem.Because of the limited computer technique in the early years,the design and optimization of a helium liquefaction cycle was primarily based on the properties of the fluid,but such a method is actually a defective one.This paper has therefore presented a novel helium liquefaction design method based on component parameters with respective to Collins Cycle,which adopts a novel “Two Models” (Energy flow model & Double rhombus model) arithmetic and “EES Estimation-Aspen HYSYS Verification” design philosophy.This method could eventually help simplify the design procedure as well as produce reasonable results.