论文部分内容阅读
设G=(V,E)是一个图,一个函数f:V∪E→{-1,+}1,如果对每一个x∈E∪V,都有∑y∈Nt[x]f(y)≤0成立,则称f为图G的一个反符号全控制函数,其中Nt(x)表示G中与元素x相邻或相关联的元素之集,称为元素x的全邻域,Nt[x]=N(x)∪{x}为x的闭全邻域。规定图G的反符号全控制数定义为γrst(G)=max{∑x∈V∪Ef(x)f为图的反符号全控制函数}。得到了一般图的反符号全控制数的若干上界,并确定了圈Cn的反符号全控制数。