论文部分内容阅读
传统的主分量分析在处理图像识别问题时是基于向量的,且没有充分利用训练样本的类别信息。该文提出了一种直接基于图像矩阵的广义主分量分析方法,该方法能够提取包含在类平均图像中的鉴别信息,与传统的主分量分析相比,具有更强的鉴别力.在ORL标准人脸库上的试验结果表明,所提出的方法不仅识别性能优于传统的主分量分析和Fisher线性鉴别分析,而且极大地提高了特征抽取的速度.