Dimensionality Reduction for Hyperspectral Data Based on Sample-Dependent Repulsion Graph Regularize

来源 :Chinese Journal of Electronics | 被引量 : 0次 | 上传用户:wangwangge
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
To achieve high classification accuracy of hyperspectral data, a dimensionality reduction algorithm called Sample-dependent repulsion graph regularized auto-encoder(SRGAE) is proposed. Based on the sample-dependent graph, by applying the repulsion force to the samples from different classes but nearby, a sampledependent repulsion graph is built to make the samples from the same class will be pro jected to samples that are close-by and the samples from different classes will be pro jected to samples that are far away. The sampledependent repulsion graph can avoid the neighborhood parameter selection problem existing in the nearest neighborhood graph. By integrating advantages of deep learning and graph regularization technique, the SRGAE can maintain the learned deep features are consistent with the inherent manifold structure of the original hyperspectral data. Experimental results on two real hyperspectral data show that, when compared with some popular dimensionality reduction algorithms, the proposed SRGAE can yield higher classification accuracy. To achieve high classification accuracy of hyperspectral data, a dimensionality reduction algorithm called Sample-dependent repulsion graph regularized auto-encoder (SRGAE) is proposed. Based on the sample-dependent graph, by applying the repulsion force to the samples from different classes but nearby , a sampledependent repulsion graph is built to make the samples from the same class will be pro jected to samples that are close-by and the samples from different classes will be pro jected to samples that are far away. The sampledependent repulsion graph can avoid the neighborhood parameter selection problem existing in the nearest neighborhood graph. By integrating advantages of deep learning and graph regularization technique, the SRGAE can maintain the learned deep features are consistent with the inherent manifold structure of the original hyperspectral data. Experimental results on two real hyperspectral data show that, when compared with some popular dimensionality reduction algori thms, the proposed SRGAE can yield higher classification accuracy.
其他文献
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
目的 探讨组织多普勒评价高血压患者左心室舒张功能方面的优越性。方法 将高血压患者分为无左室肥厚亚组(160例)和左室肥厚亚组(40例),选160例健康体检者为对照组,测定舒张早、晚期二尖瓣血流速度(E、A)峰值及左室侧壁二尖瓣环舒张早期运动速度(Em)。结果 左室肥厚亚组Em、E/Em变化较无左室肥厚亚组差异有统计学意义[(7.7±2.6)cm/s比(9.9±2.8)cm/s;9.6±3.6比7.
在设备总功率不变,加热器面积不变的前提下,通过对上海轻工设计院设计的K-7 350型并流压力喷雾干燥塔实施增加进风量,提高进风速度,合理分风,增大雾化角度的改造措施,使蒸发
良性气道狭窄常见病因有瘢痕、肉芽肿、良性肿瘤等,狭窄严重时威胁患者生命,需尽快畅通气道。硬质气管镜在操作端有侧孔与呼吸机相连,还有介入通道允许软性支气管镜及其他器械进入气道内,可在直视下进行支架释放、激光消融、氩等离子体凝固(APC)和冷冻等操作。
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
期刊
2007年9月17日10时整,随着国务委员华建敏的一声“首届中国(太原)国际煤炭与新能源产业博览会开幕”!腾空而起的绚烂礼花开启了这个山西举全省之力召开的国家级能源盛会.rn中
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
期刊
在中国历史上,广州是著名的外贸口岸。唐宋元时期,来自印度、波斯、大食等地的蕃商为这座城市的历史平添了斑斓色彩。明清时期,西班牙、荷兰、英国、法国等国商船云集广州。1980
随着社会的建设和经济的快速发展,人们对电力资源的使用量越来越多,且依赖性也越来越强,这种情况下,人们对配电线路提出了更高的要求,相关的电力部门也针对配电线路的安全稳
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
期刊