论文部分内容阅读
利用在非对易可积torus(环)上的算子都有约化矩阵这一特点,孤子解的求解问题可以化为求满足代数方程Q(M)=0的有限维矩阵解问题.本文研究了当矩阵M不可对角化时的情形,分析这种情形,得到当势函数V(φ)具有三阶以上的极值点时,有限维矩阵方程V’(M)=0存在不可对角化的矩阵解.研究了这种解的一般形式,并通过幻表象,构造了非对易整环上以上述矩阵解为约化矩阵的新孤子解.根据这种构造方法,可以得到非对易orbifold上的新孤子解.