论文部分内容阅读
针对现有的垃圾图像分类模型实时性能差和分类精度低的问题,提出基于改进MobileNet v2的垃圾图像分类方法,构建以MobileNet v2为核心的轻量级特征提取网络.通过调整宽度因子降低模型的参数量;在模型中嵌入通道和空间注意力模块,增强网络对特征的细化能力;设计多尺度特征融合结构,增强网络对尺度的适应性;利用迁移学习的方式优化模型参数,进一步提高模型精度.实验结果表明,算法在自建数据集上的平均准确率为94.6%,分别高于MobileNet v2、VGG16、GoogleNet、ResNet50