【摘 要】
:
K-nearest neighbor (KNN) has yielded excellent performance in physiological signals based on emotion recognition. But there are still some issues: the majority vote only by the nearest neighbors is too simple to deal with complex (like skewed) class distr
【机 构】
:
SchoolofComputerScienceandEngineering,TianjinUniversityofTechnology,Tianjin300384,ChinaEngineeringRe
【出 处】
:
OptoelectronicsLetters
论文部分内容阅读
K-nearest neighbor (KNN) has yielded excellent performance in physiological signals based on emotion recognition. But there are still some issues: the majority vote only by the nearest neighbors is too simple to deal with complex (like skewed) class distribution; features with the same contribution to the similarity will degrade the classification accuracy; samples in boundaries between classes are easily misclassified when k is larger. Therefore, we propose an improved KNN algorithm called WB-KNN, which takes into account the weight (both features and classification) and boundaries between classes. Firstly, a novel weighting method based on the distance and farthest neighbors named WDF is proposed to weight the classification, which improves the voting accuracy by making the nearer neighbors contribute more to the classification and using the farthest neighbors to reduce the weight of non-target class. Secondly, feature weight is introduced into the distance formula, so that the significant features contribute more to the similarity than noisy or irrelevant features. Thirdly, a voting classifier is adopted in order to overcome the weakness of KNN in boundaries between classes by combining different classifiers. Results of WB-KNN algorithm are encouraging compared with the traditional KNN and other classification algorithms on the physiological dataset with a skewed class distribution. Classification accuracy for 29 participants achieves 94.219 2% for the recognition of four emotions.
其他文献
局部k空间邻域模型是最近提出的一种k空间低秩约束重构模型,它利用图像的线性位移不变性,将图像的k空间数据映射到高维矩阵中来解决图像重构问题。针对在并行磁共振重构过程中,使用欠采样来提高成像速度而导致重构图像质量下降的问题,本文提出了一种基于交替方向乘子法求解的Lp范数联合全变分正则项局部k空间邻域建模算法。在人体的脑部和膝盖数据集上进行了实验,结果表明提出的算法与并行局部k空间邻域建模算法和结合了
给出了一种串联衬底认知射频(RF)网络与多输入多输出(MIMO)自由空间光通信(FSO)链路的双跳传输系统, 分析了其中断概率。对于射频链路, 采用瑞利衰落分布模型, 分析次级用户与主用户共享频谱的衬底认知无线电网络; 对于MIMO FSO链路, 采用Gamma-Gamma大气湍流模型, 考虑大气衰减效应和大气湍流效应, 通过等增益合并建立MIMO FSO的信道模型。推导出中断概率的闭合表达式, 仿真分析各种天气条件和大气湍流对串级链路的影响, 结果显示随着次级用户发射器的峰值发射功率增大和发射孔径与接收
用激光相变硬化技术制备45 钢冲击试样(V 型槽口),并对试样进行冲击试验,研究了激光功率对45 钢激光表面硬化冲击试样冲击韧性值的影响。通过光学显微镜和扫描电镜(SEM)观察了试样表面显微组织和断口的形貌特征。对常规热处理试样和激光表面硬化试样断口进行对比分析。结果表明,常规热处理试样断裂后断裂表面均表现出韧性断裂后的韧窝特征,激光硬化层起裂区呈现脆性断裂特征。经激光硬化后钢件的断裂机制发生改变,导致激光硬化试样冲击韧性值的下降。45 钢激光表面硬化冲击试样冲击韧性值随着激光功率增加而逐渐减少。
通过非扰动方法导出了与线偏振激光脉冲相互作用的二能级原子的诱导极化所满足的运动方程。并通过在一些不同激光强度下该运动方程所具有的不同形式,对二能级系统的高次谐波的产生过程进行了动力学分析。
针对复杂环境下的海面目标提取问题,提出一种基于偏微分方程(PDE)的红外舰船检测算法。首先采用基于PDE理论的滤波模型对初始图像滤噪并进行背景估计,然后结合邻域差分进行背景抑制后分割提取目标。实验表明,该算法能够有效检测强杂波背景中的目标,方法适应性强。
采用刻蚀技术形成台面结构的红外探测器光敏元,其表面漏电流和器件热稳定性与半导体蚀刻表面的特性密切相关。对制备的InAs/GaSb II类超晶格中波红外探测器台面蚀刻区域特性进行了研究报道。通过台面结栅控结构和快速热退火相结合的实验研究,发现热退火处理使得样品在温度80 K,偏置电压-0.05 V下的暗电流密度从2.17×10-7 A/cm2上升至6.96×10-5 A/cm2,并且有无退火样品的暗电流随偏置电压变化表现
介绍了一种计算室内自然光照度的模型。该模型以国际照明委员会公布的15种天空亮度分布模型为基础, 以天气条件、建筑朝向、建筑纬度、四季更替、昼夜更替、建筑开窗、室内表面反射系数等为变量, 较全面的考虑了影响室内照度的因素。将实际测量数据与本模型计算的结果进行比较, 结果表明本模型的计算精度能够很好地吻合实验数据。
研制了高功率、高重频非链式HF激光器,并研究了脉冲模式和重频模式下在SF6的混合气中增加电极边缘电场强度而不使用其它措施即可实现自持体引发放电的可能性,得到了重复频率为20 Hz,脉冲能量为67 J,转换效率为3%的激光输出。
A highly reliable wavelength division multiplexing passive optical network architecture for the fifth generation (5G) applications is designed by combining a tree topology with a dual-fiber ring. While the tree topology ensures the transmission quality of
本文运用角重迭模型首次对Eu3 离子在KY3F10S、YPO4及YVO4晶体中的四个角重迭参数eσ、eπ、eδ、eφ进行了计算。结果表明,所得规律与文献[1]基本相符,并且eσ和eφ两个参数对能级的劈裂和移动也有着不可忽略的作用。