论文部分内容阅读
高考理科数学第五题为: “设O为复平面的原点,Z_1和Z_2为复平面内的两个动点,并且满足:(1)Z_1和Z_2所对应的复数的辐角分别为定值θ和-θ(0<θ<π/2),(2)△OZ_1Z_2的面积为定值S。求△OZ_1Z_2的重心Z所对应的复数的模的最小值。”这道题,考生只要概念清楚,能根据已知条件写出复数的表达式、三角形重心的坐标公式、复数模的表达式(或两点间的距离公式)、三角形两边与夹角表示的面积公式,按评分标准就可得10分(本题满分15分)。如果考生有较清晰的思路,能够进行基本的三角恒等
The fifth question of science in college entrance examination: “Let O be the origin of the complex plane, Z_1 and Z_2 be two moving points in the complex plane, and satisfy: (1) Z_1 and Z_2 corresponding to the complex number of arguments are fixed θ and -θ (0 <θ <π / 2), (2) the area of △ OZ_1Z_2 is constant S. Find the minimum value of the complex modulus corresponding to the center of gravity Z of OZ_1Z_2. ”This question, Clearly, according to the known conditions to write complex expressions, coordinate center of the triangle formula, the expression of complex modulus (or the distance between two points), both sides of the triangle and the angle expressed by the area formula, according to the grading standards Get 10 points (the perfect score of 15 points). If candidates have a clearer idea, be able to carry out basic triangular identity