论文部分内容阅读
本文重点介绍了现行的点交换和胞变换方法以及它们在分析非线性动力学系统的平衡、周期解和稳定性方面的应用。基于马氏锌分析基础上的胞变换可用来进行全面的系统整体特性的分析,为非线性问题的研究开辟了一条新途径。通过一些实例具体阐明了施行这些变换的方法,所得的良好结果表明,变换方法是具有很大潜力的,值得进一步去发展和推广。
This paper focuses on the current point exchange and cell transformation methods and their applications in the analysis of equilibrium, periodic solutions and stability of nonlinear dynamical systems. Based on the Markov-Zinc analysis of cell transformation can be used to conduct a comprehensive analysis of the overall system characteristics for the study of nonlinear problems has opened up a new avenue. The method of implementing these transformations is clarified through some examples. The good results obtained show that the transformation method has great potential and is worth further development and promotion.