论文部分内容阅读
Hydrogenation of CO2 to value-added chemicals has attracted much attention all through the world. In2O3 with cubic bixbyite-type (denoted as c-In2O3) is well known for its high CO2 hydrogenation activity and CH3OH selectivity at high temperature. However, the other structure of In2O3 with rhombohedral corundum-type (denoted as rh-In2O3) rarely been investigated as catalyst. Herein, c-In2O3 and rh-In2O3 were prepared and comparatively studied for CO2 hydrogenation. The results indicated that c-In2O3 showed higher CO2 conversion activity than rh-In2O3 due to the impressive reducibility and reactivity. Whereas rh-In2O3 had higher CH3OH selectivity due to weaker CH3OH and stronger CO adsorption on rh-In2O3. Although c-In2O3 and rh-In2O3 catalysts showed different CO2 hydrogenation performance, in-situ diffuse reflectance infrared Fourier transform spectroscopy showed CO2 can be reduced to CO through redox cycling and hydrogenation to CH3OH through formate path.