论文部分内容阅读
在有边水油藏中,运用物质平衡方程时,需查图表,计算繁琐,且易出错。本文给出了有限边水平面径向流无因次水侵量计算公式的修正常系数。这样,便于计算机的正确使用。在有限供水系统中,无因次时间 t_D 在一定区间内的无因次水侵量可表示为:Q(t_D)=exp[A_1+A_2lnt_D+A_3(lnt_D)~2+A_4(lnt_D)~3+A_5(lnt_D)~4]不同的 R_D=(r_o)/(r_w)值,对应的常系数 A_1,A_2,A_3,A_4,A_5及无因次水侵量 Q(t_D)的定义域也不相同。当 t_D 大于其定义域上限时,Q(t_D)=C,见表1。计算与查表所得的 Q(t_D)值之间的最大相对误差小于2%,见表2。
In an edge water reservoir, the use of material balance equation, the need to check the chart, calculation cumbersome, and error-prone. In this paper, the modified constant coefficient of the calculation formula of dimensionless water influx in radial flow in a finite edge is given. In this way, to facilitate the proper use of the computer. In a limited water supply system, dimensionless water influx within a certain interval without dimensionless time t_D can be expressed as: Q (t_D) = exp [A_1 + A_2lnt_D + A_3 (lnt_D) ~ 2 + A_4 (lnt_D) ~3 (A), and the non-dimensional water influx Q (t_D) do not have the same R_D = (r_o) / (r_w) values corresponding to the constant coefficients A_1, A_2, A_3, A_4, the same. When t_D is greater than the upper limit of its domain, Q (t_D) = C, see Table 1. The maximum relative error between the calculated and the Q (t_D) values obtained from look-up table is less than 2%, see Table 2.