论文部分内容阅读
针对移动社会网络(MSN)的好友推荐问题,提出了一种基于多维相似度的好友推荐方法。该方法隶属于基于内容的好友推荐,但与现有方法相比,不再局限于单一维度的匹配信息,而是从空间、时间和兴趣三个维度出发,判断用户在各个维度上的相似度,最终通过"差异距离"进行综合评判,向目标用户推荐与之在地理位置、在线时间和兴趣爱好上更具一致性的其他用户成为其好友。由实验结果表明,该方法应用于移动社会网络中的好友推荐服务时,其推荐结果查准率接近80%,查准效率接近60%,性能远高于只基于单一维度的好友推荐方法;同时,通过对三维权重值的调整,该方法可应用于多种特性的移动社会网络中。