论文部分内容阅读
We study the convergence of earthquake paths and horocycle paths in the Gardiner-Masur compactification of Teichm¨uller space. We show that an earthquake path directed by a uniquely ergodic or simple closed measured geodesic lamination converges to the Gardiner-Masur boundary. Using the embedding of flat metrics into the space of geodesic currents, we prove that a horocycle path in Teichm¨uller space, which is induced by a quadratic differential whose vertical measured foliation is uniquely ergodic, converges to the Gardiner-Masur boundary and to the Thurston boundary.
We study the convergence of earthquake paths and horocycle paths in the Gardiner-Masur compactification of Teichm¨uller space. We show that an earthquake path directed by a uniquely ergodic or simple closed measured geodesic lamination converges to the Gardiner-Masur boundary. Using the embedding of flat metrics into the space of geodesic currents, we prove that a horocycle path in Teichmuller space, which is induced by a quadratic differential whose vertical measured foliation is uniquely ergodic, converges to the Gardiner-Masur boundary and to the Thurston boundary.