A multipoint interferometer (MI), uniformly distributed point-like pinholes in a circle, was proposed to measure the orbital angular momentum (OAM) of vortex beams [Phys. Rev. Lett.101,
A multipoint interferometer (MI), uniformly distributed point-like pinholes in a circle, was proposed to measure the orbital angular momentum (OAM) of vortex beams [Phys. Rev. Lett.101, 100801 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.100801], which can be used for measuring OAM of light from astronomical sources. This is a simple and robust method; however, it is noted that this method is only available for low topological charge because the diffracted intensity patterns for vortex beams with higher OAM will repeat periodically. Here, we propose an improved multipoint interferometer (IMI) for measuring the OAM of an optical vortex with high topological charge. The structure of our IMI is almost the same as the MI, but the size of each pinhole is larger than a point in the MI. Such a small change enables each pinhole to get more phase information from the incident beams; accordingly, the IMI can distinguish any vortex beams with different OAM. We demonstrate its viability both theoretically and experimentally.
We investigate theoretically two-photon absorption spectroscopy modified by a control field in a confined Y-type four-level system. Dicke-narrowing effect occurs both in two-photon absorption lines and the dips of transparency against two-photon absorptio
Understanding the mechanisms of interaction between bone/bone marrow, circulatory system and nervous system is of great interest due to the potential clinical impact. In humans, the amount of knowledge in this domain remains relatively limited due to the
We demonstrate experimentally the application of a phase error detection method in the coherent beam combination (CBC) of a laser array. The method is based on the Hartmann micro-lens array. Both the piston and tilt errors can be detected and corrected si