论文部分内容阅读
本文推导了840点素因数分解的离散傅里叶交换的算法。它将840点的DFT运算转变成为素因数3、5、7、8点的DFT运算。文中指出,对于素因数3、7、8点的DFT运算,可以不经过顺序重排而直接引用Winograd的小N的DFT算法。对于素因数为5点的DFT运算,则仅需将5点的Winograd的DFT运算结果按同余式<3k>,重排顺序。文中还给出了840点素因数分解的DFT算法的框图和BASIC程序清单。最后,文章给出该程序在微型计算机上运行的情况,并指出进一步提高运算速度的几种途径。
This paper deduces an algorithm for discrete Fourier transform of 840 prime prime factors. It transforms 840-point DFT operations into DFT operations with prime factors of 3,5,7,8. It is pointed out in this paper that for DFT operations of prime factors of 3, 7, and 8, we can directly reference Winograd’s small-N DFT algorithm without rearrangement. For a prime factor of 5 DFT operation, then only 5 points of Winograd DFT operation by the congruence <3k> rearrangement order. The article also gives a block diagram of the 840 prime factorization DFT algorithm and BASIC program list. Finally, the article gives the program running on the microcomputer, and points out several ways to further improve the speed of operation.