基于视觉同时定位与地图构建数据关联优化算法

来源 :计算机应用 | 被引量 : 7次 | 上传用户:dulizhi123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数据关联的复杂程度随着地图规模的不断扩大而增加是导致机器人同时定位与地图创建(SLAM)实时性差的一个主要原因。在SLAM系统中,主要应用尺度不变特征变换(SIFT)算法提取自然路标。提出两种方法来改进数据关联的实时性:1)提取感兴趣区域;2)引入当前路标的物理位置信息作预判断。实验结果表明,所提的改进方法是可靠的,改善算法复杂度的效果是显而易见的。
其他文献
在中学语文教学中,鼓励学生张扬个性是培养学生创造思维和能力的基石;设置活动是培养学生创造思维和能力的基本途径;创设情景是培养学生创造思维和能力的必要条件.
学习者知识模型是智能授导系统(ITS)中教学过程实现和策略实施的基础,然而由于判别学习者知识掌握程度的不确定性和学习者知识掌握水平的实时变化,构建能正确反映学习者知识掌握程度及其变化的知识模型十分困难。基于贝叶斯网络,以知识项为基本节点构建学习者知识模型的结构;引入问题节点,根据学习者的学习测试结果,采用Voting EM算法来对知识模型的参数进行在线学习和更新;同时,通过设置置信因子和更新时间标
针对遥感影像目标特性随分辨率变化的问题,提出了目标识别的多尺度分析方法。首先,基于混合像元分析了多尺度影像中地面目标形状结构产生变化的原因,这种变化主要是由混合像元在目标中所占的比例决定的;然后,根据多尺度影像中的目标提取实验,分析并验证了目标提取误差随着尺度变化的规律;最后,基于遥感影像目标的多尺度特性分析,进一步提出了优势类别的概念。从遥感目标的多尺度分析与实验结果来看,目标的形状结构特征随着