【摘 要】
:
Elevated levels of atmospheric CO2 (eCO2) promote rice growth and increase methane (CH4) emissions from rice paddies, because increased input of plant photosynthate to soil stimulates methanogenic archae. However, temporal trends in the effects of eCO2 on
【机 构】
:
Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;Jiangsu Key
论文部分内容阅读
Elevated levels of atmospheric CO2 (eCO2) promote rice growth and increase methane (CH4) emissions from rice paddies, because increased input of plant photosynthate to soil stimulates methanogenic archae. However, temporal trends in the effects of eCO2 on rice growth and CH4 emissions are still unclear. To investigate changes in the effects of eCO2 over time, we conducted a two-season pot exper-iment in a walk-in growth chamber. Positive effects of eCO2 on rice leaf photosynthetic rate, biomass, and grain yield were similar between growing seasons. However, the effects of eCO2 on CH4 emissions decreased over time. Elevated CO2 increased CH4 emissions by 48%–101% in the first growing season, but only by 28%–30%in the second growing season. We also identified the microbial process underlying the acclimation of CH4 emissions to atmospheric CO2 enrichment: eCO2 stimulated the abundance of methanotrophs more strongly in soils that had been previously exposed to eCO2 than in soils that had not been. These results emphasize the need for long-term eCO2 experiments for accurate predictions of terrestrial feedbacks.
其他文献
Crop yield loss due to soil salinization is an increasing threat to agriculture worldwide. Salt stress dras-tically affects the growth, development, and grain productivity of rice (Oryza sativa L.), and the improve-ment of rice tolerance to salt stress is
Heterosis, the phenomenon in which hybrids outperform their parents, has been utilized in maize (Zea mays L.) for over 100 years. To provide a more complete understanding of heterosis, we collected a com-prehensive transcriptome and translatome dataset on
Cotton architecture is partly determined by shoot branching and flowering patterns. GhBRC1 was previ-ously identified by RNA-seq analysis of nulliplex-branching and normal-branching cotton. However, the roles of GhBRC1 in cotton remain unclear. In the pre
With the increasing promotion of simplified rapeseed cultivation in recent years, the development of cul-tivars with high resistance to herbicides is urgently needed. We previously developed M342, which shows sulfonylurea herbicide resistance, by targetin
Rice is one of the most important food crops in the world. Weeds seriously affect the rice yield and grain quality. In recent years, there are tremendous progresses in the research and application of herbicide-resistant genes in rice worldwide. This artic
Numerous studies using a combination of confocal microscopic-and pharmacological-based approaches have demonstrated that the actin cytoskeleton dynamically responds to pathogen infection. Here, we observed that phalloidin treatment induced actin nucleatio
The two most important activities in maize breeding are the development of inbred lines with high values of general combining ability (GCA) and specific combining ability (SCA), and the identification of hybrids with high yield potentials. Genomic selecti
农田覆盖作为一种重要的农艺生产措施,已被广泛应用于各种农业生产活动中.为了定量分析覆盖条件下农田温室气体的排放效应、改善农田覆盖模式和减少农业温室气体排放,采用Meta分析方法分析了覆盖对水稻田温室气体排放的影响,并对其主要影响因素进行解析.结果表明,与不覆盖相比,覆盖水稻田CO2排放量平均增加21.9%(置信区间2.6%~44.8%),N2 O排放量平均减少43.9%(置信区间32.3%~53.5%),CH4排放量平均减少58.5%(置信区间50.8%~65.0%).N2 O排放量随施氮量的增加呈降低趋
Reproductive stage frost poses a major constraint for wheat production in countries such as Australia. However, little progress has been made in identifying key genes to overcome the constraint. In the pre-sent study, a severe frost event hit two large-sc
MicroRNAs (miRNAs) act as regulators of plant development and multiple stress responses. Here we demonstrate that the rice miR171b-SCL6-IIs module regulates the balance between blast resistance, grain yield, and flowering. miR171b-overexpressing rice plan