论文部分内容阅读
针对复杂背景下隧道的细小裂缝图像特征难以提取以及裂缝像素类别不平衡等问题,提出了一种改进U-Net网络的隧道裂缝分割算法。将U-Net模型的编码器和解码器与残差模块相结合,使得网络参数共享,并避免出现深层网络梯度消失的问题;在此结构基础上引入挤压和激励(Squeeze and Excitation,SE)模块来提升重要特征,抑制无用特征,加强对裂缝边缘和形状等特征的权重分配;采用组合损失函数来处理裂缝像素正负样本不平衡的问题,进一步获得更加精细的分割结果。在公共隧道裂缝数据集和自制数据集上设计对比实