论文部分内容阅读
Detailed parametric study of three-dimensional gas-particle multiphase flow characteristics in U-beam tube bundle inertial separators was conducted by numerical simulation. The carrier phase was treated in the Eulerian frame, the particles were tracked in the Lagrangian frame, and particle-wall collision was considered. Simulation carried out at different inflow rate and mass loading ratios revealed the pressure losses in the separators, velocity field of the gas phase, and the trajectories of particles. The study results revealed the multiphase flow-dynamic features of the separators, and the relationship between separator pressure losses and different inlet velocity. The numerical simulation can provide basis both for optimal design of impacting-inertial separator used in circulating fluidized bed boiler; and for study of gas-particle multiphase circumfluence flow.
Detailed parametric study of three-dimensional gas-particle multiphase flow characteristics in U-beam tube bundle inertial separators was conducted by numerical simulation. The carrier phase was treated in the Eulerian frame, the particles were tracked in the Lagrangian frame, and particle-wall collision was considered. Simulation carried out at different inflow rate and mass loading ratios revealed the pressure losses in the separators, velocity field of the gas phase, and the trajectories of particles. The study results revealed the multiphase flow-dynamic features of the separators, and the relationship between separator pressure losses and different inlet velocities. The numerical simulation can provide basis both for optimal design of impacting-inertial separator used in circulating fluidized bed boiler; and for study of gas-particle multiphase circumfluence flow.