论文部分内容阅读
针对实时推荐过程中实际数据的稀疏性,满足条件的项目或用户较少,导致推荐精度较低的问题,提出一种采用抽样近邻的协同过滤算法.该算法充分利用评分用户矩阵提供的信息,增加了参与到预测评分计算过程中的用户或项目,从而解决了传统协同过滤算法在实际应用中的不足.实验结果表明,在增加在线计算时间较少的情况下所给算法可有效提高推荐精度.