论文部分内容阅读
该文在研究小波域隐马尔可夫模型(HMM)的基础上,提出了一种全新隐马尔可夫树(HMT)模型.在以往的研究中,HMT通常将2维DWT的三个子带HL、LH、HH视作相互独立,形成三棵独立的子树分别建模.为了更好地描述三个子带间小波系数的相关性,该文将这三个子带中相应节点进行捆绑,作为一棵树进行建模.另外,对于每个尺度中的小波系数分布,HMT常用高斯混合分布来拟合.该文研究了基于泊松分布的统计建模方法(PHMT).纹理图像经Haar小波变换和乘数分解后,再采用PHMT建模.经过实验验证,基于泊松分布的统计建模方