论文部分内容阅读
We report a monolithic Tm:YLF micro laser in this Letter. In order to improve the relaxation oscillation of the laser, both ends of the crystal are coated, making the Tm:YLF crystal itself a resonant cavity. The micro laser is pumped by a 792 nm laser diode operated in the continuous wave(CW) mode. We obtain maximum output powers of 7.78 and 10.4 W at the total incident power of 43.6 W with focus lenses of 37.5 and 40 mm, respectively,corresponding to the slope efficiencies of 25.6% and 40.0% and the optical–optical conversion efficiencies of 17.8%and 23.8%. It is clear that the amplitude of the relaxation oscillation is smaller and the beam quality is better with the focus length of 37.5 mm; however, the laser with the focus length of 40 mm produces a higher output power and a more stable wavelength centering at 1878.44 nm.
We report a monolithic Tm: YLF micro laser in this Letter. Both the two ends of the crystal are coated, making the Tm: YLF micro laser in this Letter. 792 nm laser diode operated in the continuous wave (CW) mode. We obtain maximum output powers of 7.78 and 10.4 W at the total incident power of 43.6 W with focus lenses of 37.5 and 40 mm, respectively, corresponding to the slope efficiencies of 25.6 % and 40.0% and the optical-optical conversion efficiencies of 17.8% and 23.8%. It is clear that the amplitude of the relaxation oscillation is smaller and the beam quality is better with the focus length of 37.5 mm; however, the laser with the The focus length of 40 mm produces a higher output power and a more stable wavelength centering at 1878.44 nm.