论文部分内容阅读
论文工作针对基于内容的中草药植物图像检索问题,在系统分析已有关键技术及发展趋势基础上,对中草药植物叶子图像的领域特征提取、层次化检索策略、基于显著轮廓曲线的图像检索、基于视觉注意的花卉图像检索等问题进行了系统、深入和较为全面的研究。这些研究内容不但是基于内容的中草药植物图像检索亟待解决的关键问题,也是图像处理和信息检索领域的研究重点,具有重要的理论意义和实际应用价值。论文的主要工作和贡献如下:(1)对基于内容图像检索领域的一些关键技术作了深入的研究分析,包括:颜色、形状、纹理等常用的图像底层视觉特征和高层语义特征的描述,图像相似性度量准则,图像数据库特征索引,检索系统性能评价,相关反馈等;并对基于内容图像检索领域的主要研究方向进行了阐述;最后还给出了部分原型系统的比较分析结果。(2)叶子作为植物的重要器官,它的识别与分类在整株植物的识别与分类过程中占有重要的地位。使用颜色、纹理、形状等通用的视觉特征并不能取得很好的检索效果,因此论文从植物形态学角度,分析并提取了中草药植物叶片的叶形、叶脉、叶齿等领域视觉特征,并且将所提取的特征归类为全局特征和局部特征,在此基础上,构建了一个层次化检索策略,并进行了实验分析。实验表明:应用领域特征的检索较传统的检索更有效,并且,层次化检索策略在提高系统检索速度的同时,又保证具有较高的检索精度。(3)非标准环境下采集到的中草药植物叶子图像,一般具有复杂的背景,遮挡现象普遍存在,这都极大地影响着检索的效果。受到神经心理学中形状感知研究的启发,我们将非经典感受野抑制机制引入到图像边缘检测中,保留图像中叶子的轮廓,同时抑制复杂背景中的短小边缘,并且使用获取的轮廓曲线的特征来代表图像的形状特征。然后采用“综合多对多”的匹配策略来度量图像间的相似性,取得了良好的匹配效果。(4)一般情况下,非标准环境下采集到的中草药植物花卉图像,花卉区域具有比背景更加突出的特征属性。利用人类视觉选择性注意机制研究的成果,首先对图像进行分析,综合视觉注意模型和传统的区域生长法,来定义和获取用户感兴趣的区域,然后采用一种新的“一对一”的匹配策略来度量图像间的相似性,解决了图像的注意性匹配问题。实验证明:上述方法简单有效,降低了信息处理的计算量,提高了系统的效率。总之,我们在基于内容的中草药植物图像检索方面,首次运用比较先进的图像匹配与检索方法与技术,对中草药图谱检索问题做了有开拓性意义的研究工作,特别是提出的“植物叶子图像的领域特征提取与层次化检索”、“图像显著轮廓提取与综合轮廓匹配”、“基于视觉注意的感兴趣区域提取与花卉图像检索”等具体方法,对于推动中草药植物图像自动检索研究领域的技术发展,有着重要的学术价值和具体的应用意义。