【摘 要】
:
唑类化合物中拥有大量的C-N、C=N、N-N和N=N键,而且有很高的正生成焓和密度,这也成为了设计合成新型高能量密度材料的主体结构单元。然而,含能材料的能量与感度存在本质的矛盾,能量越高,则感度越高。近年来,追求具有高能量、低感度、良好热稳定性的新型唑类含能化合物,研究学者们已经投入了大量的工作。本论文以吡唑和1,2,4-三唑为含能骨架,合成出多个高能低感化合物,对其结构和性能进行了研究,并对部分
论文部分内容阅读
唑类化合物中拥有大量的C-N、C=N、N-N和N=N键,而且有很高的正生成焓和密度,这也成为了设计合成新型高能量密度材料的主体结构单元。然而,含能材料的能量与感度存在本质的矛盾,能量越高,则感度越高。近年来,追求具有高能量、低感度、良好热稳定性的新型唑类含能化合物,研究学者们已经投入了大量的工作。本论文以吡唑和1,2,4-三唑为含能骨架,合成出多个高能低感化合物,对其结构和性能进行了研究,并对部分新化合物进行了起爆性能测试。论文主要分为以下三个部分:1.基于硝基吡唑骨架和偕二硝基甲基金属盐的合成研究以3-氨基-4氰基吡唑为起始原料,经过氧化、胺肟化、氯肟化、硝化和还原得到3-硝基-4-偕二硝基甲基吡唑钾盐(116)或钠盐(117),采用~1H NMR、13C NMR、IR、元素分析、DSC和单晶衍射仪对两个化合物的结构进行了表征,采用理论计算预估了它们的爆轰性能。对化合物116进行了起爆性能的研究,实验表明,化合物116有望成为一种取代传统起爆药剂叠氮化铅的绿色起爆药。2.3-硝基-4偕二硝基甲基吡唑及其含能有机盐的合成研究以3-硝基-4-偕二硝基甲基吡唑钾盐为底物,通过酸化得到3-硝基-4-偕二硝基甲基吡唑(119);再通过去质子化或者复分解反应,与不同的富氮碱或盐反应得到一系列新型含能有机盐119a-d。对这些化合物进行结构表征、安全性能测试及爆轰性能理论计算。利用单晶衍射仪确定了化合物119和119a的具体结构。实验测量和理论计算结果表明,铵盐119a具有比中性分子更高的密度、更好的爆轰性能、更高的热分解温度、更低的感度。在这些含能化合物中,羟胺盐119b有最高的爆速(8700 m s-1),接近于常用的猛炸药RDX(8748 m s-1)。3.绿色无金属起爆药3,3’-偶氮-5,5’-二叠氮-1,2,4-三唑的合成研究以5-肼基四唑盐酸盐为原料,与溴化氰反应合成了3-叠氮-5-氨基-1,2,4-三唑(120)。并分析了可能的反应过程。将化合物120进一步偶联得到目标化合物3,3’-偶氮-5,5’-二叠氮-1,2,4-三唑(121)。通过核磁共振、红外光谱、元素分析、DSC和单晶衍射仪对化合物121进行了表征。并且测试了其撞击感度、摩擦感度和静电感度。化合物121具有良好的密度(1.68 g cm-3),良好的热稳定性(193oC),高的生成热(1345.1 k J mol-1),良好的爆轰性能(26.7 GPa,8345 m s-1)和可接受的感度(IS=6 J,FS=72 N,EDS=0.224 J)。用化合物121起爆RDX,测试了121的起爆能力。结果表明,化合物121可作为一种潜在的绿色无金属起爆药。
其他文献
二氟氨基可以分解产生一种分子质量相对较低、热量较高的气体,且氟具有氧化性,不仅能够提高粘合剂体系的氧平衡,同时它易于与推进剂中的金属燃料组分(如铝或硼)反应释放热量,因此具有特殊的高能性能,将其引入高分子聚合物结构中作为一种新型的含能粘合剂聚合物,在提高固体推进剂的能量方面有着重要的应用价值。在传统复合固体推进剂,粘合剂预聚物通常与固化剂交联,形成三维网状结构,作为氧化剂、金属燃料和其他添加剂的结
六硝基六氮杂异伍兹烷(CL-20)、环四亚甲基四硝胺(HMX)、环三亚甲基三硝胺(RDX)等硝胺炸药具高能量、高爆压、高爆热的特点,应用于混合炸药和固体推进剂领域可大幅度提高能量性能,但硝胺炸药的机械感度较高,限制了其进一步应用。仿生材料聚多巴胺(PDA)具有超强粘附性,可在任意基体表面形成薄层。本课题选用PDA作为包覆材料,通过理论计算预估PDA包覆降感的可行性,并制备了CL-20/PDA及CL
电网正因继电保护隐性故障面临严峻考验,亟需针对隐性故障提出辨识方法,增强电网故障辨识能力。鉴于此,根据继电保护隐性故障特点,从变电站角度,对变电站采集数据进行分类,利用同源数据比对,进行隐性故障辨识;从系统角度,分析、挖掘所投继电保护装置历史数据,按不同维度将信息分类,进行隐性故障辨识,以加强电网隐性故障辨识能力。
重复性电磁结构在实际工程中有着极大的应用,例如天线阵、频率选择表面、超材料等等。然而对其进行全波仿真计算成本太高,因此寻求准确、高效的求解方法对指导重复性结构的设计极具理论与现实意义。特征模方法自提出以来一直在电磁学领域受到广泛的关注,由于特征模只与目标固有的物理属性有关,与外加激励无关,且模式之间具有天然的正交性,因此非常适合作为目标的全域基函数来展开表面电流。再通过少数模式截断,减少待求未知量
近些年来,计算电磁学得到了迅猛发展,在各个领域都有广泛的应用。当目标电磁散射特性被一系列不确定性因素影响时,准确、高效的电磁分析方法一直以来都是研究的重点。在实际工程应用中,目标的电磁散射特性往往会受到天气、环境、人为等不确定性因素的影响,这些因素会对目标的几何外形、涂覆厚度、介电参数等带来影响。为了更准确、高效的考虑到这些不确定因素对目标的电磁散射特性带来的影响,需要从理论上去严格的分析研究。本
由于W-Cu复合材料兼具钨和铜两者的性能优势,不仅密度高,导热性和导电性好,而且膨胀系数低,在热电工业和航空航天等领域应用广泛。W-Cu复合材料中的增强相金属W熔点高且硬度高,采用传统制备方法难以制备出密度高,性能优越的W-Cu复合材料,且增强相钨和粘结相铜分布的不够均匀,存在孔隙等现象。为探究W-Cu复合材料成形机制,本文以选区激光烧结为W-Cu复合材料制备方法,从W-Cu混合粉末对激光的吸收率
为了研究一种具有高能高燃速的新型发射药,在高能发射药的配方体系中,添加三种高燃速功能材料SY、NHN、W。根据高能发射药对配方组分的应用要求,试验研究高燃速功能材料的基础性能,分析其在发射药中应用的适用性。利用密闭爆发器实验研究高燃速功能材料对高能发射药燃速特性的影响规律,并考察其对高能高燃速发射药综合性能的影响,重点试验研究能量性能、力学性能和安全性能。采用热重分析法(TG)、差示扫描量热法(D
航空航天、国防军事工业、空间环境等领域对特殊工况下服役的高性能固体润滑涂层提出了更高要求。针对宽温域的减摩耐磨问题,本文选择钽(Ta)作为高温防护涂层材料,通过软金属Cu/Ag掺杂调控其相结构并改善润滑性,采用磁控溅射技术共沉积Ta-Cu、Ta-Ag涂层,调节Cu、Ag靶材溅射功率改变合金元素掺量,测试其力学性能和不同温度下的摩擦学性能。在Ta-Cu体系中,当Cu含量达到5.5 wt.%时,涂层发
针对球扁药燃烧减面性严重及尺寸一致性难以控制等问题,本文设计了两种小尺寸的四孔发射药,直角四孔发射药和圆角四孔发射药,建立了四孔发射药的燃烧数学模型,通过燃烧形状函数和气体生成猛度的推导及模拟计算,对四孔发射药的理论燃烧性能进行对比分析,为四孔发射药的制备提供理论基础;然后溶剂法制备出不同工艺条件的发射药,采用显微镜观察发射药药孔分布、内外弧厚、药孔大小等成型情况,使用计算机软件工具对成型尺寸进行
金属氢化物作为混合炸药的添加组分是现在含能材料领域的研究热点之一,因此对金属氢化物与含能材料之间安全性的研究也成为研究重点。本文选取Mg(BH4)2作为金属氢化物类添加组分,分别将Mg(BH4)2加入钝化RDX、钝化RDX/Al、钝化RDX/Al/AP混合炸药中,使用差示扫描量热实验(DSC)、绝热加速量热实验(ARC)和真空安定性实验(VST)三种实验方法作为研究手段,对Mg(BH4)2对几种R