论文部分内容阅读
加速器驱动次临界系统(Accelerator Driven Sub-critical System,ADS)可以对核废料进行有效嬗变处理,用于产生中子的散裂靶是ADS关键部件之一。在对ADS研究中,中国科学院近代物理研究所提出了密集颗粒流靶(Dense Granular Target,DGT)概念。密集颗粒流靶是一种较为新颖的靶设计方案,该方案中采用固体颗粒作为散裂材料和冷却工质,颗粒与加速器束流发生散裂反应放出中子,同时,颗粒将散裂反应的沉积能量移出靶体并进行异地换热,散裂靶内颗粒的温升不仅与束流有关,同时与颗粒流速、环境工况等存在密切关系。可控核聚变是解决未来能源问题的有效方法之一,国际上展开了国际热核聚变实验堆(International Thermonuclear Experimental Reactor,ITER)项目,该项目中需要高通量中子源对聚变结构材料进行辐照损伤实验,加速器中子源是一理想选择。在ADS先导专项和ITER中子源项目支持下,研究团队展开了小型中子源(Compact Materials Irradiation Facility,CMIF)的研究,CMIF借鉴了ADS密集颗粒流靶的经验,采用了斜槽铍颗粒流靶设计。无论ADS靶设计还是CMIF靶设计均需考虑束靶耦合问题以及颗粒异地换热效率问题,而密集颗粒体系热输运研究是解决上述问题的关键之一。目前对密集颗粒体系传热的研究工作主要集中在模拟计算方面,建立了各种传热模型,而密集颗粒流传热实验研究较少,因此颗粒传热实验具有相当重要的工程和理论价值。本文主要对密集颗粒流靶系统传热问题展开研究,主要研究内容有:(1)搭建移动床颗粒流传热实验装置,采用接触式和非接触式测温手段对高温颗粒流的换热进行实验研究,从而获得不同颗粒在不同工况下的平均换热系数,并与经典的Bauer“两区”传热模型进行对比分析。研究表明:移动床传热与Bauer“两区”模型相切合,随着接触时间的增加,颗粒移动床平均换热系数减小;随着颗粒热导率和气体热导率的增大,颗粒移动床平均换热系数增大,实验结果与Schünder经验公式结果趋势一致。(2)CMIF利用50MeV@10mA连续波氘束流轰击斜槽铍颗粒流靶产生中子,铍颗粒既作为靶体又作为热移除介质。本文采用离散元数值模拟等方法对斜槽铍颗粒流的稳定性问题进行了研究;对束流条件和束靶参数之间的关系进行了研究,随着束斑的减小,热密度随之增大;同时,对1atm氦气工况下斜槽颗粒流靶进行了流动传热数值模拟研究,颗粒最高温升约550K;最后,对背板冷却和辐照损伤问题进行了研究。(3)基于斜槽颗粒流靶的概念,设计并搭建了颗粒循环回路—CMIF冷态样机。简述了样机关键部件设计方案,同时,对原理样机的部分关键部件进行了离线实验,包括:斜槽颗粒流动实验,换热实验以及长时间稳定运行实验。CMIF冷态样机目前连续运行120小时无故障。