论文部分内容阅读
柴油发动机能够为多种机械装备提供运行动力,在工业、船舶、电力、军工等多个领域都被普遍配备并使用。但是由于柴油发动机具有工作条件恶劣,机械结构复杂、振源多、转速高等特点,使其很容易发生零部件磨损,甚至是机械故障,对机组的健康造成威胁。由于振动信号传递路径复杂且具有强耦合性,传统的设备故障诊断方案很难在实际工业现场中取得令人满意的在线诊断结果。随着深度学习技术的发展,通过大量数据自动学习出故障特征并进行在线故障诊断成为了一种有效的解决方法。本文针对如何将深度学习引入到柴油发动机的异常检测和故障诊断领域,主要在以下几个方面开展了研究工作:(1)针对实际中故障样本缺乏,难以训练故障诊断模型的现状,本文从异常检测的角度出发,提出了一种基于一维卷积自编码器的柴油发动机异常检测算法。通过一维卷积自编码器来输出状态模型与观测模型间的误差,并通过箱线图法对误差进行评估,并确定异常检测的阈值。最后通过实验台实测数据进行了验证,结果表明了所提方法在柴油发动机异常检测上的有效性。(2)深入研究了栈式自编码器的特征提取性能,从多个评价指标上对各种特征提取方法进行对比分析,验证了通过栈式自编码器自动提取的深度特征性能上的优越性。在Dropout技巧的帮助下搭建了基于栈式自编码器的柴油发动机故障诊断模型,并通过实验结果表明了所提故障诊断方法具有比其他传统方法更高的准确率。(3)针对自编码器网络超参数的选取问题,提出了一种改进变分自编码器,通过在变分自编码器中引入和声搜索算法实现了模型超参数的自动优化。并将改进变分自编码器用于变工况下柴油发动机的故障诊断中,实验结果表明了所提改进方法相比于原始栈式自编码器在非稳定工况下有更好的表现,正确率也高于其他多种典型的故障诊断算法。(4)通过搭建柴油发动机故障模拟实验台采集了气门间隙故障数据,并通过分析振动数据得出了气门故障在振动信号上所表现出的特征。同时结合实际工程案例研究了其他柴油发动机典型故障的故障特征与相应的诊断方法。