论文部分内容阅读
电致变色是指材料在外界电压作用下发生氧化还原过程,同时在可见光区产生可逆的光学透过或吸收变化,这一特殊的性质吸引了学术界和工业界的广泛研究兴趣。相比于无机电致变色材料,有机电致变色材料具有响应速度快、能量损耗低以及颜色变化多样的优点。近年来,三苯胺及其衍生物作为空穴传输材料而广泛应用在光电领域,除此之外还因其优异的电致变色性质而引起了关注。三苯胺具有一个氮原子氧化还原中心,并且空间构型类似于螺旋桨形。将三苯胺结构引入聚合物中,不仅赋予了聚合物电致变色的性质,还改善了聚合物的溶解性。因此,三苯胺类的电致变色材料可以通过溶液涂覆成膜的工艺方法广泛应用在智能窗、汽车防炫目后视镜和电致变色显示器等工业器件中。本文以基于三苯胺的聚酰胺为研究对象,从分子结构设计角度出发,制备基于多个氮原子中心的多重电致变色的聚酰胺材料。设计在聚酰胺结构中引入二甲基胺基团,从而增加聚酰胺的氮原子氧化还原活性中心。本文设计并制备了两种不同系列的聚酰胺,均展现出多重电致变色性质。具体如下:(1)合成了4-二甲基胺取代的三苯胺结构的二胺,设计并合成了含有4-二甲基胺取代的三苯胺结构的二酸。将均含有4-二甲基胺取代的三苯胺结构的二胺与二酸通过脱水聚合反应制备含有多个氮原子中心的聚酰胺PA-Ⅰ。对该系列聚酰胺的电化学和电致变色性质进行了重点研究,聚酰胺PA-Ⅰ薄膜在电化学测试过程中展现出4对可逆的氧化还原峰,且具有较低的氧化起始电位(0.38 V)。在电压逐渐增加的过程中,聚酰胺PA-Ⅰ薄膜展现出四种颜色的变化,这是由于聚酰胺PA-Ⅰ单元有四个氮原子氧化还原活性中心。(2)设计并合成了含有4-二甲胺取代的四苯基对苯二胺结构的二胺单体,并与两种不同的二酸进行脱水缩合反应制备聚酰胺PA-Ⅱ系列。该系列聚酰胺的电化学研究表明,PA-Ⅱ具有4对可逆的氧化还原峰,氧化起始电位仅有0.22-0.23 V,并且第一个电化学氧化还原具有良好的稳定性。在电压变化的过程中,聚酰胺PA-Ⅱ具有四种颜色的变化,是由于聚酰胺PA-Ⅱ单元的四个氮原子发生氧化还原作用造成的。以上结果表明:在基于三苯胺的聚酰胺中引入二甲基胺基团,大大降低了聚合物的氧化起始电位;更重要的是还增多了聚合物的氮原子活性中心,使制备的聚酰胺在外加电压的作用下能够展现出多重颜色的变化。