论文部分内容阅读
作为现代通信系统中极为重要的核心器件,固态功率放大器的趋势是向着高功率、高频率、高效率发展,其性能优劣往往决定了整个通信系统的性能表现。但是单个器件的输出功率相对有限,为了满足大功率的需求,通常采用功率合成技术解决这一问题。但是随着输入功率的增大,固态功放逐渐进入非线性工作状态。此时功放出现非线性失真现象,严重影响了功放的性能。因此,可以采用线性化技术保证放大器能同时拥有较高的输出功率和较好的线性度。本文首先研究了基于二极管的预失真线性化器。针对固态功放的非线性特性,对并联式肖特基二极管模拟预失真线性化器电路的非线性特性进行了研究。理论分析了线性化器的温度响应并提出了一种温度补偿方法,通过调节二极管的偏置电压使其等效电阻不随温度变化,从而实现线性化器的温度补偿。仿真结果表明,增加了温度补偿电路后幅相曲线随温度变化很小,并同时呈现增益扩张和相位压缩的特性。该预失真线性化器具有结构简单,稳定性好等优点。然后针对K波段功率合成技术进行了研究。分别设计了三种不同类型的无源功率分配合成网络,并确定以探针实现波导到微带的转换,主要内容如下:对传统的波导E-T结进行了改进,在原有结构上增加了过渡波导和三角劈尖,输入输出匹配得到了很大改善,以此为基础两级波导E-T结级联后构建了一个四路功分器。将该功分器背靠背连接,仿真结果显示:在20-22GHz频带内,该功率分配合成网络插损小于0.3dB,回波损耗优于24dB。在3dB分支波导定向耦合器的基础上,将两个耦合器的直通端合并,通过优化耦合孔尺寸来调节三个输出端口的幅度与相位,仿真得到的三路功分器三个输出端口幅相具有较好的一致性。将与探针级联的三路功分器反向连接,仿真结果表明:在20-22GHz工作带宽内功率合成网络的插损小于0.5dB,回波损耗优于18dB,对于非二进制功率分配合成网络而言,该结构性能良好。对径向波导中电磁场进行了理论分析,以此为基础设计了一种八路功分器,并通过在径向波导底部增加多级阶梯结构实现阻抗匹配。仿真可知该功分器满足低反射和低损耗的设计要求,相位一致性较好。背靠背连接后,在工作频带内整体结构的插损小于0.6dB,回波损耗优于14dB,达到了设计目的。最后基于波导E-T结设计了一款K波段四路功率合成放大器,该放大器在-30°C到50°C的工作温度范围内输出功率均大于8W,三阶交调优于-20dBc,性能表现良好。