可拓突变级数法及其应用研究

来源 :大连海事大学 | 被引量 : 0次 | 上传用户:laiyq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
突变级数法是一种对评价目标进行排序分析的综合评价方法,以突变理论和模糊数学为理论基础。由于该方法具有科学性、合理性、而且计算简单,已被广泛应用在医学、经济、地质等诸多领域。然而,由于该方法采用人为确定相对重要性,因此,存在主观性。而且该方法要求控制变量的个数不能超过4个。这些特点限制了突变级数法的应用。本文研究了突变级数法,通过引入可拓学理论,对突变级数法进行改进,改进后的突变级数法称为可拓突变级数法。本文主要对突变级数法做如下改进:(1)通过引入信息熵理论对控制变量重要性的确定方法进行改进。利用熵值越小,信息越重要的原理,通过熵值对控制变量重新排序。从而增加了客观性,得到的突变系统更为可信。(2)通过可拓理论化解突变级数法与实际问题之间的矛盾。建立二者矛盾问题的可拓模型,针对突变模型中控制变量不能超过4个这一特点进行矛盾分析,利用可拓变换方法进行矛盾变换,使用不相容问题转化为相容问题。从而使突变级数法可以解决多于4个控制变量的实际问题。(3)通过可拓关联函数优化突变模型中的结合函数。最后,本文以中国的经济增长为研究对象,利用可拓突变级数法对中国2008-2017年的经济增长进行评价。评价结果表明,该方法在经济增长评价方面非常有效,验证了可拓突变级数法的正确性及有效性。
其他文献
煤化工生产中的合成气净化系统直接影响整个煤气化过程及后续工序的稳定运行。低温甲醇洗技术是目前脱除合成气中酸性气体较为成熟的技术,其冷能消耗较大。本文针对该问题提
Mg基储氢材料因其储氢量高和价格低而被认为是最具应用前景的储氢材料之一。但是,由于反应温度高和动力学性能差限制了它的实际应用。本文以三种改性碳球为添加剂,通过氢化燃
近年来,利用肿瘤微环境的独特性来设计具有相关刺激响应开关的纳米药物递送系统已经成为癌症治疗的有效策略,其中肿瘤组织的酸性微环境常被用于设计具有pH靶向的药物递送系统
图G的一个E-全染色是指使相邻点染以不同颜色且每条关联边与它的端点染以不同的颜色的全染色.对图G的一个E-全染色f,一旦Vu,v∈V(G),u≠v,就有C(u)≠C(v),其中C(x)表示在f下,顶点x的
转录激活因子WRI1在油脂合成调控中起关键作用。本研究结合山核桃胚转录组数据,通过本地BLAST和PCR方法分离克隆了CcWRI1A和CcWRI1B并利用实时定量PCR方法、生物信息学方法和
二代测序技术(NGS)日渐成熟推动了基因组结构变异(SVs)检测技术的发展,而倒位变异作为基因组结构变异之一,研究对其进行检测的方法,在生物遗传多样性及医学研究中具有重要意义。通常用来检测倒位变异的策略归结为三种:读对技术、分裂比对策略与序列拼接,常规策略由于倒位变异固有复杂性而受到局限。因此,为了进一步解决现阶段策略受限、检测精确度和召回率不足等问题,本文创新性提出深度挖掘倒位变异的伴随特征,通
Lie环方法是解决有限p群问题的一种有效方法.本文对Lie环方法在有限p群中的应用进行综述并利用该方法给出了方次数为p的有限p群的导群的阶的上界.本文分为如下三个部分:第一部分主要是对Lie环方法进行简单介绍;第二部分是对Lie环方法在有限p群中的应用进行综述.分为如下六方面内容:(1)域上的有限维的线性群与有限p群的联系;(2)关于p群宽的Wiegold猜想;(3)关于p群的coclass猜想;
癌症,作为一种高发病率和高致死率的疾病,由于其复杂性和易转移性,使得现有的治疗手段效果并不理想。近年来,越来越多的科学家开始意识到肿瘤与肿瘤微环境是一个不可分割的整
目的:采用三维斑点追踪技术(three dimensional speckle tracking imaging,3D-STI)超声心动图观察左室射血分数(left ventricular ejection fraction,LVEF)正常的重度主动脉
硅橡胶是一种重要的橡胶材料,其具有优异的耐热性、耐候性及生物相容性,通过添加色料还可制成色彩多样的硅橡胶产品,这些是普通橡胶所不具备的优秀特性。硅橡胶充实了橡胶制