论文部分内容阅读
船舶在波浪中的航行状态关系着船舶运行的安全,而减摇装置一直以来都受到人们的重视,现有减摇措施存在着占用船内空间较大或者是在零航速时减摇效果不理想等的缺点。而Magnus旋转圆柱减摇装置可以克服以上缺点,具有良好的应用前景。Magnus旋转圆柱减摇装置是安装在船底两侧,利用Magnus效应使圆柱产生升力来进行船舶减摇的装置。Magnus减摇装置有两种减摇工作状态:在有航速时,通过圆柱旋转产生的升力来减摇;在零航速的时候,该装置可以在旋转的同时,利用圆柱前后摆动获得来流速度,进而产生升力。本文针对Magnus旋转圆柱减摇装置进行基础理论研究,将Magnus旋转圆柱减摇装置简化为旋转圆柱和摆动旋转圆柱,进而对影响其水动力性能的各个因素进行详细研究。本文主要工作如下:介绍圆柱绕流基础理论,为以后分析旋转圆柱绕流打下基础;介绍了 Magnus效应的原理,从伯努利原理以及边界层理论解释了 Magnus效应减摇装置工作原理;简要介绍了 CFD计算方法,并进行了不确定度分析,同时进行了数值验证,和其他学者的结果对比,验证本文计算的可靠性;介绍了旋转圆柱试验的相似理论,确定了影响旋转圆柱水动力性能的主要参数,并针对这些参数进行了旋转圆柱绕流试验,结果表明旋转圆柱的升力系数和阻力系数都随转速比的增大先增大而后减小,可对数值计算的结果起到验证作用。对影响旋转圆柱水动力性能的主要参数采用CFD方法进行了数值仿真。首先研究了转速比、雷诺数以及粗糙度的变化对三维无限长旋转圆柱水动力性能造成的影响;然后分析了转速比、雷诺数以及长径比对三维有限长旋转圆柱水动力性能造成的影响,结果表明转速比对其影响最大。利用CFD数值计算对摆动旋转圆柱的模型和摆动控制方程进行了优化,然后对摆动旋转圆柱模型进行了水动力性能数值计算,分析了摆动角速度和转速比对摆动旋转圆柱模型水动力性能造成的影响。介绍了船舶横摇的基础理论,对该减摇装置的控制系统以及PID控制方法做了简要介绍,并且结合该控制方法对本文的减摇运动模拟方法进行了介绍;最后在选定模型的基础上分别对匀速航行和零航速的减摇运动进行了模拟,对比减摇前后的减摇效果,结果表明理想状态下作用于该模型的Magnus旋转圆柱减摇装置具有非常好的减摇效果。