论文部分内容阅读
随着电子控制技术在汽车上的广泛运用,与此相对应的汽车故障诊断技术要求也越来越高。对于汽车电喷发动机的故障诊断,传统的技术手段和经验判断方法已远不能对其进行准确诊断。由于神经网络具有强大的非线性映射能力、并行处理能力、良好的学习能力和容错性、独特的联想记忆能力等优点,因此利用虚拟仪器技术和神经网络技术相结合的方法,研究汽车发动机的故障诊断有一定意义。
本文首先概述了虚拟仪器的结构、发展及其在汽车上的应用,再通过分析人工神经网络的结构和故障诊断原理,以及电喷发动机常见故障部位,对于汽车发动机提出了基于虚拟仪器和神经网络的故障诊断新方法,建立了初始诊断程序系统,并通过实验分析验证此方法的可行性。
本课题主要从电喷发动机出现故障时相应工况着手研究,整个研究主要有以下五方面:一、以笔记本电脑作为工作平台,利用虚拟仪器技术,通过NI公司图形编程软件LabVIEW设计发动机运行时的数据采集系统。该仪器系统能同时采集多个反映发动机运行工况的传感器信号,实时显示在界面上,可进行直观分析,也能把数据保存到硬盘,进行后处理。二、利用虚拟仪器系统在本田飞度i—DSI发动机试验平台上进行实物测试试验,进一步调试和完善程序,使其达到实验精度要求。三、进行发动机平台实验,让发动机在正常状况和有故障状态下运行,利用上述虚拟仪器系统采集各状态下的相关数据,并整理和分析这些原始数据,确定用以作为神经网络训练和检测用的样本。四、通过Matlab的神经网络工具建立神经网络模型,并进行训练,检验合格后,再整合到编制好的数据采集虚拟仪器系统中,使仪器具备神经网络诊断分析的功能。五、实验验证。让发动机在预先设定的故障下运行,诊断系统将采集到的数据送入神经网络模型的输入端,进行分析判断,得出故障类型并显示在LabVIEW界面上。
通过实验证明,本文提出的这种基于虚拟仪器和神经网络的汽车发动机故障诊断程序基本上能识别设定的故障,这对实现汽车发动机故障诊断的自动化和智能化有一定的指导作用。